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ABSTRACT

This technical report presents a submission to the ICME
Grand Challenge, focusing on the task of Semi-supervised
Acoustic Scene Classification (ASC) under Domain Shift.The
ASC task faces challenges due to domain shifts caused by dis-
tribution gaps between regions, considering factors such as
time, space, culture, and language. Furthermore, the abun-
dance of unlabeled acoustic scene data in the real world un-
derscores the importance of data efficiency. To address this,
we propose a training framework to leverage Masked Autoen-
coders (MAEs) for knowledge transfer across regions. We
demonstrate the effectiveness of our approach through exper-
iments on the DCASE dataset.

Index Terms— Masked Autoencoder, self-supervised
learning, semi-supervised learning, acoustic scene classifica-
tion, domain shift

1. INTRODUCTION

Acoustic scene classification (ASC) [1] presents a mul-
tifaceted challenge in machine learning, characterized by
the necessity to accurately categorize environmental sounds
amidst varying contexts and conditions. One of the
paramount challenges within ASC is the phenomenon of do-
main shift, wherein a notable distribution gap between train-
ing and testing data impedes the generalization performance
of classification models [2]. Since 2018, the DCASE chal-
lenge has been instrumental in spotlighting the critical issue
of generalizing ASC models across different recording de-
vices [3]. While significant progress has been made in ad-
dressing device generalization [4, 5], the broader challenge
of domain shift persists, particularly concerning diverse re-
gions marked by variations in temporal, spatial, cultural, and
linguistic characteristics. In the landscape of ASC research,
the exploration of domain shift across regions remains rela-
tively unexplored [6]. Moreover, the abundance of unlabeled
acoustic scene data in real-world settings underscores the im-
portance of leveraging these resources effectively.

In response to these challenges, the International Con-
ference on Multimedia and Expo (ICME) has launched a
Grand Challenge focused on knowledge transfer techniques
for ASC across domains [7]. Our submission to this chal-

lenge proposes an innovative approach harnessing Masked
Autoencoders (MAEs) [8] for knowledge transfer. By delving
into self-supervised learning principles, MAEs facilitate the
extraction of domain-invariant representations from acoustic
data, thus offering a promising avenue for addressing domain
shift.

This report provides a comprehensive exposition of our
proposed methodology, elucidating the theoretical underpin-
nings of Masked Autoencoders and delineating their applica-
tion in mitigating domain shift in ASC. We present empirical
evidence showcasing the efficacy of our approach on bench-
mark dataset, demonstrating its ability to enhance the gener-
alization performance of classification models across diverse
environmental contexts.

2. DATASET AND PREPROCESSING

The experiments were conducted using the CAS 2023 dataset
for development. This dataset encompasses approximately
24 hours of recordings from 8 cities. To facilitate the devel-
opment of effective semi-supervised methods, the organizers
randomly provided 20% of scene labels within the develop-
ment dataset. Across the 10 acoustic scene classes, the num-
ber of labeled recordings for each scene is evenly distributed.
Since the evaluation dataset remains unseen by participants,
we partitioned the labeled data into a training/test split of
80:20 for validation purposes.

We follow [9, 10] for audio preprocessing. All audio seg-
ments were down-sampled to 32kHz at first. For feature ex-
traction, we employed Short-Time Fourier Transform (STFT)
with a window size of 3072 and a hop size of 500. Sub-
sequently, a Mel-scaled filter bank with 256 frequency bins
and 4096 FFT was applied to transform the spectrograms into
Log-Mel spectrograms.

3. MODEL ARCHITECTURE

In the audio domain, Audio Masked Autoencoder (MAE) [8]
has been introduced as a unified and scalable framework for
self-supervised audio representation learning, achieving state-
of-the-art performance on audio and speech classification
tasks. Additionally, Audio-MAE incorporates masking strate-
gies for spectrogram patches, exploring both unstructured and



structured masking during pre-training and fine-tuning phases
to encourage learning global, contextualized representations
from limited visible patches. The effectiveness of mask-
ing in self-supervised learning is highlighted, with Audio-
MAE demonstrating improved performance through masking
strategies in both pre-training and fine-tuning stages. There-
fore, we introduce Audio-MAE to this task.

The MAE model architecture consists of a pair of a Trans-
former encoder and decoder. The encoder processes only a
small portion of non-masked patches to reduce computational
overhead, while the decoder includes standard Transformer
blocks with local attention mechanisms. The decoder restores
the original time-frequency order in the audio spectrogram,
incorporates fixed sinusoidal positional embeddings, and pre-
dicts/reconstructs the input spectrogram using a linear head at
the top of the decoder stack. Additionally, the model employs
masking strategies during pre-training and fine-tuning phases
to encourage learning global, contextualized representations
from limited ”visible” patches and to further regularize learn-
ing from a limited view of spectrogram inputs.

4. TRAINING PIPELINE

We follow the official pretraining strategy for MAE [8] on
DCASE dataset [3] while obey the semi-supervised learning
pipeline for finetune on ICME dataset [7].

4.1. Pre-training Stage

1. Input Processing: The audio input is transformed and
embedded into spectrogram patches.

2. Masking Strategy: A majority of spectrogram patches
are masked and discarded, while a portion (e.g., 60%)
of non-masked patches are fed into the Transformer en-
coder for efficient encoding.

3. Encoder: The encoder, consisting of a stack of stan-
dard Transformers, processes the non-masked patches
to reduce computation overhead.

4. Decoder: The decoder, also composed of standard
Transformer blocks, receives the encoded patches, re-
stores the original time-frequency order, and predicts
and reconstructs the input spectrogram.

5. Objective: The decoder learns to reconstruct the in-
put spectrogram by predicting the values in the spec-
trogram patches, with the objective being the mean
squared error (MSE) between the prediction and the in-
put spectrogram.

4.2. Fine-tuning Stage

1. Encoder Fine-tuning: Only the encoder is kept and
fine-tuned, while the decoder is discarded.

2. Pseudo-labeling:The ASC model is used to assign
pseudo labels to the unlabeled data within the devel-
opment dataset.

3. Further fine-tuning: The pseudo-labeled data is uti-
lized for additional fine-tuning on the MAE model, re-
sulting in the final ASC model used for evaluation.

5. RESULTS

The performance of our model on different datasets reveals
notable variations. When evaluated on the DCASE dataset,
the test accuracy achieved a value of 67.52%, indicating a
satisfactory level of performance within the bounds of typi-
cal results observed in similar studies. However, upon testing
our model on the ICME dataset, a significantly higher test ac-
curacy of 98.85% was attained. It is imperative to note that
the train/test data split for the ICME dataset was determined
by us, as the organizers did not provide one. This substantial
disparity between the accuracies on the two datasets may in-
dicate a potential issue of severe overfitting. For the reason of
time shortage, more approaches to address this issue will be
explored in future works.
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